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The mth order cardinal B-spline-wavelet (or simply, B-wavelet) 1/1", is known to
generate orthogonal decompositions of any function in L 2( - Cf) ,x). Since l/J '" is
usuallY,considered as a bandpass filter, a wavelet series g = L c,!/J",C - j) may be
treated as a bandpass signal. Hence, the problem of characterizing g from its "zero·
crossings" is very important in the application of spline-wavelets to signal analysis.
However, since g is not an entire function. weak sign changes of g must also be
taken into consideration. The objective of this paper is to initiate a study of this
important problem. It is noted, in particular, that in contrast to the total positivity
property of the mth order B-spline, the B-wavelet 1/1", seems to possess a remarkable
property, which we call "complete oscillation." ie: 1993 Academic Pre". Inc.

1. INTRODUCTION

For any posItIve integer m, let N", denote the mth order cardinal
B-spline with integer knot sequence 7L, defined recursively by

N",(x) := (N", .. I * N J )(x) =rN", I(X - t) dl,
o

( t .1 )

where N I = X(0. I] is the characteristic function of the unit interval (0, I].
Corresponding to the N"" the m th order cardinal B-spline-wavelet I/J m

(which will be called "B-wavelet" for short), introduced in our earlier work
[3], is defined by
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where
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2m - 2

V'm(x):=2- m+ ' L (-1)}N2m(j+1)N~7:,1(2x-i)
}~o

3m - 2

I q",.jN",(2x - i),
}~o
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(1.2)

(1.3 )

While it is well known (cf. [10, 12]) that the B-spline N", generates a
multiresolution analysis of L 2 := L 2( -X!, oc;),

... c V'~ I C V;;' C V';' c ...

in the sense that

for all k E E, it was shown in [3] that the B-wavelet I/J '" generates the
orthogonal subspaces W; in the sense that

for all k E E. Here, we have, for each k E E,

V;;' 1.. WZ';

and the notation

for the orthogonal summation will be used. Hence, it follows from the facts

that

c1os[2 (u V;) = L2

kEl'

and n V"'- ro)·k -\ j

kEd

L 2 = EB W;;':= "'EBwmIEBW~JEBW'lnEB....
kEif'

In other words, every function IE L 2 has a (unique) orthogonal wavelet
decomposition:

(1.4 )

gk = I d71/J",(2 k
. -i)·

jE if'
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(1.5 )

The significance of the coefficients d7 in the wavelet series decomposition
(1.4) of f is that they are constant multiples of the integral wavelet
transform

(Wij,mf)(h, a) = fi f
x

f(t)i[J", (' ~ h) dt

of f relative to the dual wavelet i[J '" of l/J '" at the dyadic time-scale locations

j
h= 2k '

More precisely, i[J '" E W~' is defined by

1
a=-2k '

f' l/J",(t)i[J",(t-j)dt = rJ i .O , jEll,
-J_

and

(1.6 )

For more details, the reader is referred to [3]. The objective of this paper,
on the other hand, is to analyze the wavelet series

gk = L d;l/J",(2k . -j),
IE l'

which constitutes the kth component of the orthogonal wavelet decomposi­
tion off

In signal analysis, a bandpass (and band-limited) signal u is an entire
function of the exponential type with

supplal c [-{3, -ctJ u [ct, {3J

for some ct and {3, where 0 < ct < {3 < w. It is well known (cf. [9J) that the
distribution of the zeros of such a signal u is governed by the "Nyquist
rate" (cf. [13, p. 87 J), and under certain conditions, u can be completely
recovered from its isolated sign changes (or better known as "zero­
crossings"). In the application of wavelets to signal processing, any wavelet,
such as l/J"" is also considered as a bandpass filter (cf. [5,6, IOJ). Conse­
quently, the wavelet series gk in (1.7) may also be treated as a bandpass
signal. However, since gk is only a spline function, it is not a band-limited
signal. Hence. a very important problem is to study the behavior of the
isolated sign changes of gb and, particularly, conditions under which the
wavelet series gk is characterized by its isolated sign changes.
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This paper is intended to initiate a study of the above stated problem. It
will be observed that in contrast to the "total positivity" property of the
B-spline N m' the B-wavelet 1/1 m seems to enjoy a remarkable property
which we call "complete oscillation." While a precise notion of this
property has yet to be described, a discussion of upper and lower bounds
of the count of both strong and weak sign changes will be the main theme
of this paper.

2. IDENTIFICATION OF THE ORTHOGONAL SUBSPACES

From the definition of the nested sequence of spline spaces VZ' of order
m, where k E 71, that constitute a multiresolution analysis of L 2, it is clear
that the m th order differential operator

is an injection from v;m to V; for each k E 71. Let us introduce a closed
subspace V;~ of VZm

, defined by

(2.1 )

Then the orthogonal complementary subspace W;' of V;'+ I relative to V;'
can be identified as the subspace VZ": 1,0 of VZ":- l' as follows.

THEOREM 2.1. Let m be an arbitrary positive integer. Then for any k E 71,
a wavelet series gk is in WZ' if and only if there exists a function Sk E VZ":- 1,0

such that sim/(x) =gdx). Furthermore, the differential operator nm maps
VZ":- 1,0 one-one onto W;.

Proof Without loss of generality, set k = O. Let A2m E v~m satisfy

(2.2 )

Then we have

0=r lj;J'\:) Nm(x - j)dx = [j, ..., j +m]A2m, jE 71..
--x

Since V7mn Jrm = {O}, we may conclude that A2m (J) = 0, j E 71. Now, for
any B-wavelet series

g(x) = I djl/lmCx - j),
jE Z
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it follows from (2.2) that Dms = g, where

. . '" I' ( .) V 2m
.\ .= L. (1"'2m . -J E 1.0"

IE II

On the other hand, for any function .~ E V~:'il' it is clear that Dm.~ E V';' and

r (D"'s)(x) Nm(x-j)dx= [j, ... ,j+m]s=O,

"

for all j E Z. That is, corresponding to any .~ E V~:'~, we have Dm.~ E W~'. I

In proving Theorem 2.1, we have seen that the spline function A2m

defined in (2.2) generates the subspace V~:'i) in the sense that the e-c1osure
of the linear span of

(2.3 )
2m

is all of V~:'(). In the following, we will show that the set /\2,,, in (2.3) is an
unconditional basis of V~:'().

COROLLARY 2.1 For any positive integer 111, 1\2m is an unconditional
hasis of V~:'~.

Proof: Since {l/Jm(. - j): j E Z} is an unconditional basis of W~' (cf. [4])
and the compactly supported spline function )'2m is related to the B-wavelet
l/Jm by Dm)'2m == l/Jm' it follows from Theorem 2.1 that 1\2m is a basis of V~~().

To show that this basis is unconditional, it is equivalent to showing that

L 1J. 2m(w +2rrkW > 0,
kE

all w (2.4 )

(cf. [4,10]), since the expression in (2.4) IS a 2n-periodic continuous
function in w. To verify (2.4), we note that

(2.5)

where :: = e iw/2 and

2m 2

E2m 1(::):=(2111-1)! I N 2mU+l)zl
I~O

(2.6 )
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is the so-called Euler-Frobenius polynomial of order 2m - 1. Hence, since
£2m I never vanishes on the unit circle and

:: = e - ;"'/2, we may conclude that

2 4m { 1 I" (W .)1
2

=[(2m-t)lf 1£2m 1(-ZWi~J' N 2m 2+ 21l')

+ IE2m I(ZWIJV2m (~+ n + 2nj)/2}
2 - 4m

[ (2m _ I )! f [ (4m _ 1)!] {I E 2m I( - :: )1
2
1E 4m 1(:: )I

+IE2m l(z)1 2 1£4m I(-::)I}>O

for all :: = e"u/2. This completes the proof of the corollary. I

3. OSCILLATING PROPERTIES OF SPLlNE-WAVELETS

Since the first order B-wavelet I/J I is simply the Haar function, namely,

I/J 1= X(0.1/21 - X(I,'2.I],

whose oscillating properties will be evident, we only restrict our atten­
tion to continuous functions f by only considering I/J m where m?: 2.
A continuous function f is said to have an isolated sign change at X o,
iff(xo)= 0 and

f(xo+ t)f(xo - t) < 0

for all sufficiently small values of t > O. The following notations which are
somewhat standard (cf. [8,14]) will be used for any continuous function
f with compact support:

(i) supp f is the smallest closed interval outside which f vanishes
identically.

(ii) ZC(f) i~he closure of the set of x such that f(x) #- O. Hence,
Z'(f) = supp f iff Z'(f) is an interval.
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(iii) S ~ (f) is the number of strong sign changes of f, in the sense
thalJt is the number of isolated sign changes of f that are interior points
of Z'(f).

(iv) S+(f) is the number of both strong and weak sign changes of
f, in the sense that it is the count of interior isolated zeros of f with those
that are not isolated sign changes counted twice.

THEOREM 3.1. Let

N

g(x) = I cj!/Jm(X - j)
j~O

such that COCN #- 0 and Z'(g) = supp g. Then

N + 3m - 2 ~ S (g) ~ 2N + 3m - 2

(3.1 )

(3.2 )

Furthermore, there exists a subset {x I' ..., X N + 3m 2} of the set of isolated
sign changes of g that satisfies

j-m<xj<j, j = 1, ... , N + 3m - 2. (3.3 )

Proof From (1.2) and (3.1), we have

2N+3m

g(x)= I
k~O

where

(3.4 )

N

dk = I qm.k ~ 2,CI'
;=0

(3.5 )

Hence, the upper bound in (3.2) holds, since S - (g) is bounded above by
the number of strong sign changes of the coefficient sequence {dk } of the
B-spline series representation of g (cf. [14, p. 178J). To establish the lower
bound in (3.2), we first observe the simple fact that for any fE C J (IR) with
f(a)=f(b)=O, where a<b,f' has at least one sign change in (a,b) unless
f is identically zero there. Now, corresponding to the given g E W~I in (3.1),
let us consider the spline function

N

G(x) = I C;)'2m(X - j)
;=0

In vi:7J. Since CoC", #- 0 and SUPP!/Jm = [0, 2m - 1J, we have

Z'(G) = Z'(g) = supp g = [0, N + 2m -1].

(3.6 )

(3.7)
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Hence, it follows from the fact

61

G(k) = 0,

G(!)(O) = G(!I(N + 2m - 1),

kE7L

1= 0, ..., 2m - 2,

that there exists {x~}, such that each x~ is an isolated sign change of G(!),

where j = 1, ..., N + 2m + 1- 2, 1= 1, ..., m, and

o< x: < 1< x ~ < 2 < ... < N + 2m - 2 < x ~ + 2m _ I < N + 2m - 1

0< xi < x: < x~ < x ~ < '" < x ~ + 2m _ 1 < x~ + 2m < N + 2m - 1

In particular, by setting x j = x~, we conclude that, for each j = 1, ..., N +
3m - 2, xj is an isolated sign change of G(!) =g, and (3.3) is satisfied. I

Remark 1. In view of (2.2), the spline function G(x) in (3.6) has the
following B-spline series representation:

where

2N + 2m - 2

G(x) = I ak N 2m(2x - k),
k~O

N

"lk = (- I )k 2 - 2m + I "N (k 2' + 1)a 1..- 2m -"j ci ·
i~O

(3.8 )

(3.9)

Although an upper bound of S- (G) is given by 2N + 2m - 2 in view of
(3.8), the constraint in (3.9) of the coefficient sequence {ad may possibly
reduce this upper bound for certain c. Similarly, the constraint of the
coefficient sequence {dd in (3.5) may also reduce the upper bound of
S (g) in (3.2).

Remark 2. If we set N = 0 in (3.1), then (3.2) yields

(3.10 )

Hence, since l/J m is a B-spline series with 3m - 1 consecutive terms, it must
have precisely 3m - 2 zeros in the interior of its support [0, 2m - 1], and
all these zeros are simple zeros (cr. [8,14]). The fact that l/J", has minimum
support has already been established in [4]. We also note that by the
symmetry or antisymmetry of l/Jm' depending on even or odd m, these
simple zeros of l/J m (which are isolated sign changes) are symmetric with
respect to the midpoint x = m - 1/2 of supp l/J"'. To be more specific, let

Xm = {Xm.l, .." X m ,3m- 2},
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where O<X""I < , .. < X"'. 3", 2<2m-l, be the zero set of l/J", m
(0, 2m - I). Then we have

X; = 2m - I - X 3m ii' j = I, ..., 3m - 2.

These zeros also satisfy (3.3) for N = O. A listing of the zero set X", of l/J m

for m = 2, 3, 4 is shown in Table I. It is noted that X rn satisfies the stricter
constraint

(J.) , (J+m-I .)max 2,}-m <x"',i<mm 2 ,j, (3.11 )

for m = 2, 3,4. In fact, as pointed out by Goodman [7], this observation
is valid for all m, as follows.

PROPOSITION 3.1. Let m ~ 2 be any posl!lve integer. Then the zeros
x m . l , ... , x",.3m-2 0/ the mth order B-wavelet l/J", satisfy the inequalities
in (3.11).

Prool In view of (3.3), it is sufficient to verify

j J+m-l
2<xm ,; < 2

Furthermore, by changing 2x to x, it is sufficient to prove that for any
spline function

N

f(x)= L: CkN",(x-k)
k~O

TABLE I

Zeros of ljJ",

Zeros

X2.1 = 0.574218
xv= 1.187500
Xv = 1.812500
X2.' = 2.425782
X'.1 =0.605562
X.'.2 = 1.269625
x ,,1 = 1.898438
x,.. = 2.500000
x,,, = 3,101562

X'.6 = 3.731375
x l,7 = 4.394438

Zeros

X •• 1 = 0.625000
X 4.2 = 1.312500
Xo = 1.968750
x',4 = 2.585938
x4,5 = 3.195312

x'.6 = 3.804688
x4,7 = 4.414062
x 4.' = 5.031250

x'.9 = 5.687500
x'. IO = 6.375000
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with isolated zeros t I < ... < t" we have

i<t;<i+N-r+m-l,
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for all i = 1, ... , r. By symmetry, we only need to establish the lower bound.
Assume, on the contrary, that the lower bound fails for i = j, say. Then the
spline function

;

](x)= I ckNm(.x-k),
k~O

being identical to f(x) on (-00, iJ, satisfies

](tJ = 0, i= 1, ..., j,

where I, ~j. Since it is clear from its formulation that] has at most j - 1
isolated zeros in the open interval (0, j), we have

and

This implies that

](x) =0, j~x ~j+ 1.

C j _ m + I = ... = C j = 0

by the local linear independence of B-splines; and consequently, ] has at
most j - m ~j - 2 isolated zeros. This is a contradiction. I

Remark 3. It follows from Proposition 3.1 and an application of the
Schoenberg-Whitney theorem, that even a stronger version of uniqueness
of t/J m holds; namely, if g E V7' (which may not even be in the subspace W~'

of V7') satisfies

suppg= [0, 2m-I],

such that each x m .!' j = 1, ..., 3m - 2, is an isolated sign change of g, then
g is a constant multiple of t/J m' This observation is in the same spirit as
signal recovery from its zero-crossings to be discussed in the next section.

We now turn to the study of the stronger count S+(g) of both strong
and weak sign changes. The same standard notation for counting sign
changes of finite sequences of real numbers

k=O, ... ,n, (3.12 )

of length n + 1, will be used; namely, S-(a) is the count of actual (or
strong) sign changes in {ao, ..., an} after all the zero terms are deleted, and

640721-5
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S+(a) is the count if each zero term is changed to +1 or -1 so as to
maximize the count. Hence, the following relation can be easily verified
(d. [14, p. 25J).

LEMMA 3.1. Let a he a real sequence of lenth n + 1 as given in (3.12), and
set

Then

* - {( 1)k (a - - a k j, k=O, ... , n. (3.13 )

S+(a) + S (a*) ~n. (3.14 )

For linear wavelets, we have the following result concerning S+ (g).

THEOREM 3.~ Let g be the wavelet series given in (3.1) lvith m = 2,
cocNioO, and Z'(g)=suppg. Then

2N + 4 - S (c ) ~ S + ( g ) ~ 2N + 4. (3.15)

In particular, if the coefficient sequence c = {c/} in (3.1) is of one sign, i.e.,
S- (c) = 0, then

(3.16)

Remark 4. The upper bound in (3.15) is a consequence of the spline
series expansion (3.14) with m=2 and a well-known result on zero count
(d. [8, p. 233; 14 J).

Remark 5. It is tempting to generalize (3.15) to wavelet series of
arbitrary order. A plausible generalization would be

2N + 3m - 2 - d(m) - S"'(c) ~ S+(g) ~ 2N + 3m - 2 - d(m), (3.17 )

for some non-negative integer d(m), with d(2) = O. In this regard, it was
already pointed out by T. N. T. Goodman (cf. [7]) that d(4»O. Perhaps
(3.17) would hold for only a subclass of wavelet series, where the variation
of the coefficient sequence c is subject to certain constraint. That d(m)
should be nonzero is somewhat reasonable due to restriction of the
coefficient sequence {dk }, governed by (3.5), of the B-spline series (3.4).
With the validity of (3.17), the property of "complete oscillation" of
wavelet series, which is possessed by linear wavelets as shown in (3.16),
could be generalized to spline-wavelets of higher orders.

We now turn to the proof of Theorem 3.2.
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Proof We need the values of t/J 2UI2), j E Z, which can be easily
computed by using (1.2) and (1.3). These values are given as

t/J2 G) = t/J G) = /2

t/J2 G) = t/J2 G)=-~

t/J2G)=~

t/J 2 G) = 0 for j ~ 0 or j ~ 6.

With the values in (3.18), we form the (2N + 5) x (N + 1) matrix

(3.18 )

1

6

10 1

6 6

1 10 1
1 6 6

-
12 1 10

6 1

1 6

10

6
1

where the entries not entered are all zeros. It is easy to show that B is of
class TP N + 1 (cr. [8, p. 12] for the definition). By setting

VK = (g G)' gO), ...,g CN
2+ 5))

* _((') (2) (3) 2N+4 (2N + 5))vK - g "2 ' - g "2 ' g "2 ' ..., ( - , ) g -2- ,

(3.20 )
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the wavelet series (3.1) at x = 1/2, ..., 2N + 5, with m = 2, can be written in
matrix form as

v: = Be.

By a well-known result on total positivity (cf. [8, p. 223]), we have

so that an application of Lemma 3.1 yields

s + (vK) ~ 2N + 4 - S- (v: )

~ 2N +4 - S - (e ).

This establishes the lower bound in (3.15) and completes the proof of the
theorem. I

4. CHARACTERIZAnON OF SIGNALS IN TERMS OF ZERO-CROSSINGS

It is well known that, under certain conditions, a bandpass band-limited
signal can be completely recovered from its zero-crossings (or sign
changes) (cf. [9]]). The reason for this to possibly hold is that under
certain conditions such as being in e( IR) and satisfying a given normaliza­
tion condition, an entire function of exponential type r is completely
characterized by its real zeros whose distribution is governed by the
type r (cf. [I]). Since a spline-wavelet series is piecewise analytic, it is
hoped that some analogous results are still plausible. In the following, we
only give a very modest contribution to this problem in order to initiate
this important direction of research.

THEOREM 4.1. Let

/Ii

f(x)= L di I/J2(x-j};
i~ 0

/Ii

g(x) = L: Ci I/J2(X - j)
j~O

be two linear spline-wavelet series with ZC(f) = ZC(g) = [0, N + 3] such that
S- (e) = 0 and g has only simple zeros. Then iff and g have the same zeros,
f must be a constant multiple of g.
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Proof By assumption, we have dodN#-O and COcN#O. Choose C such
that Co = cdo . Then

N

(g-cf)(x)= L (c j -Cdj )t/!2(X-j).
j~ I

Suppose that g - cf is not identically zero. Then we may assume, without
loss of generality, Z'(g-cf)=[I,N+3]. Since (g-cf)Evi, an
application of the Budan-Fourier theorem (cf. [14, p. 163]) affirms that
the number of zeros Z(g - cf), counting multiplicities, of g - cfin the open
interval (1, N + 3) does not exceed 2N + 2. That is, we have

Z(g - cf) ~ 2N + 2. (4.1 )

On the other hand, since the restriction of g to (0, 1] is a constant multiple
of I/J 2' it has only a simple zero in (0, 1]. Hence, it follows from
Theorem 3.2 that

In addition, since g has only simple zeros and f has the same zeros as g,
we have

Z(g)j II.N +3) ~ Z(g - cf).

Therefore, from (4.1), (4.2), and (4,3), we obtain

2N + 3 ~ S+ (g)I(I.N+ 3) ~ Z(g)1 II,N+ 3) ~ Z(g - cf) ~ 2N + 2,

which is absurd. This completes the proof of the theorem. I
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(4.3 )

We do not have a good conjecture for the value of d(m) in (3.16) other
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whom we are very grateful. The consideration of zero-crossings was
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